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Maximum Likelihood Failure Detection Techniques
Applied to the Shuttle RCS Jets

John J. Deyst* and James C. Deckert*
The Charles Stark Draper Laboratory, Inc., Cambridge, Mass.

A software technique for onboard detection and identification of hard failures and leaks of the shuttle orbiter
reaction control subsystem jets during the orbital flight phase is presented. The method uses only the gimbal
angle and linear velocity measurements available from the orbiter inertial measurement unit. The system
produces rotational state estimates required by the attitude autopilot in addition to performing failure iden-
tification. Uncoupled steady-state constant covariance extended Kalman filters with residual traps are employed
for rotational and translational state estimation, and generalized likelihood ratio tests are made for failure iden-
tification. Rigid body simulation results indicate station-level identification times of less than 2 sec for primary
jet hard failures and less than 70 sec for vernier jet hard failures and primary jet leaks.

Nomenclature

a = composite six-vector of angular and linear
disturbing accelerations caused by jet failures

a4 —disturbing linear acceleration in principal
body axes

ay —linear acceleration caused by commanded jet
firings

b; = bias of IMU integrating accelerometer i

C —acceleration influence coefficient six-vector
for jet station I

(oF =jet command component along IMU inertial
axis i

ey = uncalibrated bias of accelerometer

e — linear acceleration error caused by nominal jet

firing inaccuracies

€pmi —mean value of quantization error for ac-
celerometer {

E,; = variance of uncalibrated bias of accelerometer
i

E; = recursively calculated component of W;

E, = covariance of linear velocity error caused by
e over one sample interval

E,; —variance of linear velocity error along IMU
inertial axis i caused by n; over one sample in-
terval

i =variance of y;
; = force exerted by a failure at jet station

H = measurement geometry row vector for general
system

1.,1,,1, = principal moments of inertia

t(fi*) =likelihood argument for jet station i

m; = output of accelerometer i

M =measurement history

m,,my,m, = commanded jet torques about principal axes

N(q) =norm of quaternion g

plaiM) = probability density function of a conditioned
on M

P = estimation error covariance for general system

P, = covariance of the error in the estimate of a

P, = covariance of error in the estimate of a4

P, —estimation error covariance for £ angular
channel

" Presented as Paper 75-155 at the AIAA 13th Aerospace Sciences
Meeting, Pasadena, Calif., Jan. 20-22, 1975; submitted March 21,
1975; revision received Aug. 18, 1975. Work supported under Con-
tract NAS9-13809 with the NASA Johnson Space Center.

Index categories: Navigation, Control, and Guidance Theory;
Spacecraft Attitude Dynamics and Control.

*Staff Engineer, Control and Flight Dynamics Division. Member
AlAA.
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4.9, =quaternions

q; = attitude quaternion representing the rotation
of reference frame i to reference framej

Q =IMU gimbal angle quantum size

Q, =IMU integrating accelerometer quantum size

ol-} = quantization operator

r =variance of the error in attitude measurement

R —scalar measurement error variance for general
system

RL; =ith row of R}, the direction cosine matrix
transforming principal body axes to IMU iner-
tial axes.

S —covariance of discrete process noise for
angular channel

Sa —covariance of fictitious discrete process noise
for linear disturbing acceleration estimator

t, =discrete value of time

v; =linear velocity component along IMU inertial
axisi

v/ = fixed vector in reference frame j

W, —variance of measurement error of ac-
celerometer i

X =state vector for general system

y =scalar measurement for general system

oy r =component of vehicle disturbing angular ac-
celeration along £ axis

= time step for discrete state estimator

é = vector of small angle measurement residuals

N = process noise component along IMU axis i

N =scalar component of quaternion j

i =random component of quantization error of

. accelerometer i ' .

¢ =dummy variable assuming the symbols ¢, 6,
and ¢ to denote the components of &

0j = vector component of quaternion j

ot =piecewise constant linear disturbing ac-
celeration estimation error variance

d = state transition matrix for angular channel

w; =component of vehicle angular velocity along £
axis

Subscripts

d =disturbing acceleration

X, 0.2 = principal body axes

o,0,¥ =roll, pitch, yaw axes, synonymous with

motion about x,y,7 axes respectively

£ =dummy variable assuming the symbols &, 8,
and ¢ to denote variables in the roll, pitch,
and yaw channels respectively
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Superscripts

- =estimated quantity

- =measured quantity or residual

+ =value immediately after discrete measurement

incorporation

- =mean value

* =maximum likelihood estimate

! =conjugate of quaternion
Reference frames

I =IMU inertial frame

B =estimated body frame implied by estimated

) body attitude quaternion

B =measured body frame implied by measured

body attitude quaternion

I. Introduction

HE space shuttle orbiter reaction control subsystem

(RCS) consists of thirty-eight primary jets and six vernier
jets located at fourteen stations on the vehicle. The current
nominal thrust levels are 900 Ib for the primary jets and 25 Ib
for the vernier jets. This paper addresses the problem' of
detecting and identifying the hard failure of a primary or ver-
nier jet and the leaking of propellant of a primary jet during
the orbital mission phase. This failure detection and iden-
tification (FDI) is accomplished using only the gimbal angle
and the linear velocity measurements from the three onboard
inertial measurement units (IMU’s), and no addmonal hard-
ware or measurements are required.

The evolution of methods and algorithms for effective FDI
has progressed significantly in recent years. Work by Beard!
and Jones? resulted in a systematic algebraic method for
designing fault detection filters for linear stationary systems.
Chien? exploited and extended the sequential probability ratio
technique pioneered by Wald* to detect failures in navigation
systems. Willsky, Deyst, and Crawford® adopted the bank of
filters approach of Buxbaum and Haddad® to detectlon and
compensation of jump failures. Mehra and Peschon,” and
more recently Willsky and Jones,® exploited the charac-
teristics of the innovations process of optimal estimation to
develop efficient fault detection methods. The method
developed in Ref. 9 and presented herein is a practical ap-
plication of some of these methods to a specific FDI problem.

The FDI system makes use of generalized likelihood ratio
(GLR) methods'0 and optimal estimation theory!! to reliably
identify failures and minimize false alarms. Accurate vehicle
attitude and angular velocity estimates are developed as an in-
tegral part of the FDI system, and thus the system performs
the task of vehicle attitude estimation as well as jet FDI. The
estimators were developed originally under the assumption
that estimation error covariances would be calculated in real
time. Simulation of these estimators indicated that the error
covariances were nearly constant over relatively long periods
of time. It was found that the determining factor was whether
or not jets were firing. Hence the real time covariance
calculation was subsequently eliminated, and piecewise con-
stant covariances employed. Three sets of covariances were
found to be adequate: one for coasting periods when no jets
are firing, a second set when jets are being commanded to
fire, and the third set for use in identifying a hard primary jet
failure after it has been detected.

The FDI algorithm uses the current estimates of disturbing
linear and angular acceleration to determine the maximum
likelihood estimates of the forces due to jet leaks at each of
the jet stations. GLR techniques are then employed using
these maximum likelihood jet force estimates to determine
which, if any, of the jet stations has failed.

II. System Modeling and Estimation

The ability to detect and identify jet failures from IMU data
is strongly dependent upon the physical properties and

X, Y, Z = VEHICLE
FRAME

Fig. 1 Jet station locations and thrust directions.

geometry of the spacecraft. Figure 1 illustrates the station
thrust directions for the FD-2 shuttle orbiter RCS jet con-
figuration. Multiple jets at a particular station are separated
from one another by approximately one foot. Because of the
small differences in moment arm lengths for jets at the same
station, compared to the expected thrust variations in an un-
failed jet, and because the exact thrust to be expected from a
leaky jet is not well known; no single jet failure may be
distinguished dynamically from a similar failure of another
jet at the same station. Therefore, this paper will only be con-
cerned with the identification of jet station failures. However,
it is not difficult to envision manual procedures utilizing
selective jet firing and propellant enabling commands
together with the output of the algorithm developed in this
paper to identify individual failed jets.

In order to identify RCS jet station failures using IMU
data, it is necessary to compute estimates of the disturbing
angular acceleration and linear acceleration of the shuttle or-
biter, in body coordinates, arising from unexpected jet ac-
tivity. These disturbing angular and linear accelerations are
statistically correlated since they arise from the application of
physical forces on the vehicle. Thus, to minimize estimation
error, these variables should be estimated together to exploit
the information contained in the correlation. However, the
dimensionality and corresponding computational require-
ments of the combined estimation of rotational and trans-
lational state variables precludes this approach in an onboard
autopilot system. Additionally, the correlation between the
rotational and translational state variables is not high, so
neglecting the cross-correlations does not appreciably degrade
estimator performance.

In the following two subsections, discrete time-varying
estimators for rotational and translational state variables are
developed which utilize only information available from the
IMU. These estimators are subsequently simplified to employ
piecewise constant covariances.

Rotational Estimation

otrimmal wim

Because of its reduced dimension and co mput Ll
plicity, the attitude quaternion was selected as the angular
position state variable. The attitude guaternion is a four-
dimensional representation of a rotation about a single
axis.!? The quaternion consists of a scalar and a vector part,
with the notation

q:)\+p (1)
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The scalar portion represents the cosine of half the rotation
angle, and the vector portion represents the sine of half the
rotation angle times a unit vector along the axis of rotation u.
The conjugate g’ of the quaternion ¢ in Eq. (1) is given by

q’ =A=p @
The product of two quaternions is given by

Giq2=NA—ppr+Npy+Np; Xp, ©)]

and the norm of a quaternion N(gq) is given by
N(g) =qq’'=q'q=N+p-p O

It follows from Egs. (1-4) that the norm of the attitude
quaternion is one.

Define the attitude quaternion g} as the quaternion
representing the single rotation through which reference
frame 1 must be rotated to align with reference frame 2. The
representation of a fixed vector in frame 1, v/, is related to its
representation in frame 2, v?, by

vi=qiv(g})’ )

where the vector in the above quaternion multiplication is
treated as a quaternion with a zero scalar component. It then
follows that

at=q} 4} ©)

The attitude quaternion employed in this study is g4, where
I represents the inertial reference frame and B represents the
shuttle orbiter principal axis frame. The principal axis frame
is near the vehicle body frame, and roll, pitch, and yaw are
defined as rotations about the x, y, and z principal axes
respectively. '

Between successive discrete IMU measurement times dif-
fering by the small time step A, the estimated quaternion in
propagated by the second order equation!2

g5 (tns 1) =qh+ (1) [1—0% (8,) -0* (1,)A%/8
+{@* (1,) +a(t,4)}A/4] ™

where the plus superscript indicates variables after
measurement incorporation, the angular velocities in roll, pit-
ch and yaw satisfy Euler’s equations, and the estimated
angular velocity components are thus propagated by the first
order equations!?

I,—-1I
B tae) =03 (1) + | 2% 07 (1,067 (1)
X
M, (t
+ M) +éa,d (L) :]A
I, :

I -1
c‘oa(zn+,>=a»;(t”)+[—‘7*

= 6); (Zn)a\t (tn)
y
M, (1,)
4 2 al
I

Y

+&d,ﬁ+ (tn) ]A

R R I.—-1, .
w¢(t"+l)=wz- (tn)+ I:T (1)2‘ ([n)w; (tn)
z
M, (1)
4 —2 "7
1

Z

+ay (6) [A ®

where /,,1,,I, are vehicle moments of inertia about principal
axes; M M, M, are commanded jet torques and &g,
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Qg4, G4, are estimates of roll, pitch, and yaw disturbing
angular accelerations caused by jet failures. The jet failure
torques are modeled as Brownian motion processes, so be-
tween measurements the disturbing angular acceleration
estimates are constant

G4 (ths) =84 (L,) ®

The total complement of angular state estimates thus consists
of the attitude quaternion g/, the angular velocity & and the
angular disturbing acceleration &,.

Since the three vehicle principal axis moments of inertia are
unequal, it follows from Eq. (8) that there will be cross-
coupling between the three rotational axes and hence
correlation between roll, pitch, and yaw estimation errors.
The extended Kalman filter for this angular system would
thus have a (9 x9) covariance matrix.!""!* The computational
complexity of such an estimator is unwarranted in view of the
marginal gain in accuracy that might be obtained by carrying
along the correlations between axes. Therefore, it is assumed
that there is zero correlation between the roll, pitch, and yaw
estimation errors.

Covariance matrix propagation is consistent with the stan-
dard extended Kalman filter techniques, except for the
elimination of any correlation between channels. The (3 x3)
covariance matrix for each ¢ channel, where £ is a generalized
index assuming the symbols ¢ for roll, 8 for pitch and ¢ for
yaw, is propagated independently of the others according to
the equation

Py(ty))=2P¢ (1,) 27 +S(¢,) (10
The ordering of state variables in each channel is taken as at-

titude first, rate second and disturbing acceleration third.
Thus

1 A A%/2
¢=| 0 1 A (11)
0 0 1

The matrix S(¢,) is diagonal with the (3,3) element chosen
empirically to facilitate tracking of disturbing accelerations
due to jet failures, the (2,2) element chosen to model attitude
disturbances and allowable thrust variations in unfailed jets
and the (1,1) element set to zero.

The measurements available to the angular state estimator
are attitude quaternions obtained from the IMU gimbal angle
readout system. Define gk as the IMU measurement, Then
the residual quaternion g£ given by

qsf=(qs) as (12)

represents the rotation by which the estimated body frame B
would have to be rotated to align with the measured body
frame B. Assuming accurate measurements and estimates,
this rotation will be small, and hence the residual quaternion
may be approximated as

af =1+&/2; 6= (8, 6317 =

The elements of € are small angle residuals about the x,y,z
vehicle principal axes. The discrete Kalman filter
Mmeasurcment incorporation equations for a sysiem consisling
of a state x, a state estimate x with error covariance £~
and a linear measurement with additive noise y = Hx+ w with
noise variance w? = R are given by

P*=P-PHT[HP HT+R] ~'HP (14)

it =£+P*HTR ' (y—H%) (15)
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Since the correlation between angular channels is assumed
zero in this study, the rate and disturbing acceleration
estimate updates are calculated independently for the roll,
pitch, and yaw channels. Because these measurement in-
corporation equations are analogous for each channel, the
equations are presented in general form for the ¢ channel,
_where £ assumes the symbols ¢, 6, and y for the roll, pitch,
and yaw channels respectively.

The IMU provides attitude measurements, SO the filter
measurement matrix is

H=[100] (16)

Applying Eq. (15) and (16) along with the £ channel
measurement residual & from Egs. (12) and (13) yields the
measurement incorporation equations for angular velocity
and disturbing accelerationat a discrete measurement time

af =6y +PHIL2Er an

G =b4;+Pf (1L, E/r (18)

In Egs. (17) and (18) r is the variance of the measurement
error, Py (1,2) is the correlation between £ attitude and rate
estimation errors after the measurement, and P (/ ,3) is the
correlation between & attitude and disturbing acceleration
estimation errors after the measurement. These correlations
are elements of the £ channel covariance matrix defined in
terms of its elements as

P.={P (i)} i,j=123 19)
The elements of P{ are computed using Egs. (14) and (16)
prior to performing Eqgs. (17) and (18).

Measurements are incorporated into the attitude quaternion
under the assumption that the total angular correction is
small. From Egs. (15) and (16), the estimated vehicle orien-
tation is updated by rotations of P} (1,1)o/r in roil, P& (4,
1)8/r in pitch, and P} (1,1){/rinyaw. This is accomplished
by the following quaternion multiplication. Define

gf=(I-s35)"+s 20)

s= (P} (L,1§/r, P (1,1YO/r, PY (LDHy/ryT2 - @21

Then from Eq. (6) the updated quaternion estimate is

g5 =q5 a5

o

(22)

The gimbal angle readout mechanism is not able to deter-
mine gimbal angle below a specified granularity or quantum
size Q. The best knowledge of the actual gimbal angle is that it
lies within +Q/2 of the gimbal angle output reading. The
philosophy of this study is that a quantized measurement of
attitude should be incorporated into the attitude state
estimates, with a corresponding decrease in the attitude error
covariance matrix, only if the measurement adds new in-
formation, i.e., only if the measurement is inconsistent with
the present attitude estimate. The measured quaternion
stipulates that the attitude estimation error for the £ channel
(£ =¢,0,¥) must be in the interval

[ £-0Q/2 E+Q/2]) (23)

while the £ channel state estimator is interpreted as con-
tending that the attitude estimation error is zero. Thus the at-
titude quaternion measurement is incorporated into the £
channel estimate if the region given by Eq. (23) does not in-
clude zero, i.e., if

1E1>0/2 (24)

If Eq. (24) is satisfied, the measurement is incorporated intg
the £ channel. The measurement noise is r=07%/12, the
variance for a uniform distribution of width Q.

It may occur that for one or more channels the estimate ang
measurements will be consistent over many samples, and no
measurement incorporations will occur. As a result, the filter
covariance will grow via Eq. (10), and the angular position
error covariance may, unrealistically, become larger than r,
Therefore, at each sample time, if Eq. (24) is not satisfied and
if P (1,1)>r, a covariance shaping is accomplished by per-
forming Eq. (14) for the & channel without changing the §
channel estimates. .

To summarize the rotational state estimator, at each sample
time the roil, pitch, and yaw residuals are calculated using
Egs. (12) and (13). If the residual £ satisfies Eq. (24), Egs.
(14), (17), and (18) are performed for the £ channel, and £ is
inserted into Eq. (21). If the residual £ does not satisfy Eq.
(24), £ =01is inserted into Eq. (21) and if P;(1,1) >r, Eq. (14)
is performed for the £ channel. After these steps have been
carried out for all three attitude channels, i.e., for £=¢,0, and
¥, then Egs. (20) and (22) are performed. Between sample
times, the roll, pitch and yaw covariances are propagated
using Egs. (10) and (11) for £=¢,0, and ¥, and the state
estimates are propagated using Egs. 7-9).

Translational Estimation

The difference between the output of an inertially stabilized
IMU’s integrating accelerometer from one time to another is a
measure of the integral of one component of specific force ap-
plied to the vehicle over that time interval. The change in the
integral can be written as

Ui(te)—Ui(tk)=S;[R§,i(ad+aj) +n;1dt : 25

where explicit time dependence of the variables is dropped for
notational convenience. R}; is the ith row of the direction
cosine matrix transforming principal body axes to IMU iner-
tial axes.t a, is the disturing linear acceleration in body coor-
dinates, assumed constant between times ¢, and ¢,. a; is the
acceleration due to commanded jet firings, assumed constant
between successive sample times 7, and 5., 1; is the process
noise acceleration caused by crew motion, machinery, etc.,
also assumed constant between successive sample times.
The output of the ith accelerometer at time ¢; is given by

,
mi(t) =Olu,() + | bt 8)

where Qf-} denotes quantization of the quantity in
brackets and b; is the instrument bias in the ith accelerometer,
assumed constant. The measurement shown in Eq. (26) can be
written as the sum of the quantity in brackets and an error
term. This error term is defined to consist of a mean value and
a random component. Thus Eq. (26) becomes

"
mi(tj)=vi(tj)+S;’obidt+ém,i(tj)+l»"i(tj) 27

where €, ;(¢;) is the mean value of the quantization error at
t; and p;(t)) is the random component of the quantization
error at #;. The values of these quantities depend upon the ac-
celeration level at the time of the measurement and the value
of the measurement one sample previously, and are discussed
in Appendix A.

Since the actual values of a, and b, are not known, they
may be written as the sum of their a priori means and random
€rrors as

a_]=dj+ej,' bi=b_i+eb,i (28)

$The transformation matrix Rlis easily calculated from the attitude
quaternion gj.!
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where b;, the calibrated bias, and e, ;, the uncalibrated bias,
are constant. Substituting Eqs. (27) and (28) into Eq. (25) and
rearranging gives

% "
mi(t) —mi(t) —€n () +€5, (1) — S: (R} a,+b))dt
k

!( ll
= 5 Ry dta,+ S [RE e+,
'3 3

+epJdt+pi(ty) —pite) (29)

Equation (29) is a key result for the linear disturbing ac-
celeration estimator, and is in the standard from y=FHx+w,
where a, is the state to be estimated.

Because the object of this study is the design of a discrete
filter, certain assumptions are made regarding the forms of
the errors in Eq. (29). In particular, the error e; and the
driving noise 7; are assumed constant over a sample period
and uncorrelated from one sample period to another. Using a
sample period of &, with¢; <¢<¢,,,, define

Ej(lj)zej([)ej([)TAz; Eh,lze’zl,l

En,i(fj)=771(t)2A2; E“,i(tj):',“'i(tj)z (€1)]
Then the covariance of the measurement noise in Eq. (29) is
given to first order by
=1
Wiltut) = 3o (Rb(GYE; ()R (4) T +E,i (1))
j=k

+ (=1 Ey +E,;(4;) +E,; (1) G

Because the estimator is required to follow a step change in
the disturbing linear acceleration a,, arising from a jet leak or
hard failure, the filter must postulate the existence of some
noise driving a, between sample times. Thus the covariance of
the error in the estimate of a,, P, satisfies the recursive
equation

Py(tye)=Pa(t,) +5,(1,) - (32
where S, (,) is the covariance of the fictitious driving noise.

The estimate of the disturbing linear acceleration is held con-
stant over the sample interval, i.e.,

i) =d7(1,) (33)

Defining the summation of measurement noise in Eq. (31)

as E;(t,t), it follows that the recursive formula
for E; (¢,,t,) is given by
E(tyr 1) =Easty)

+RE (1) E; (1) Ry (t)) T +E, ;i (1,) (34)

Defining the measurement geometry vector as

[|~
Hi(t,t)= g RL (ndt (33)
o l/‘,
it follows that Loiwecn sa mples /7, ((,,0;) propauulcs via the
approximation
1{,(,”,/v,l/\.)21{,([,,,’A)+R51_1(/,,)A (36)

Also, defining the jet command measurement component as

C (1 t,) = 3 "RL,(0a,(t,)dt 37
3
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it follows that between samples C;(¢,,#,) propagates via the
approximation

Cillys st =Ci(@nt) +RE (1) a;(t,) A (38)

Measurement incorporation in the disturbing linear ac-
celeration filter occurs in two different situations. A
measurement is incorporated whenever the output of any of
the integrating accelerometers changes between samples. This
fits well into the linear filter theory since the measurement
errors from one measurement interval to another are essen-
tially uncorrelated. In addition, measurements are in-
corporated when unchanging instrument outputs are in-
consistent with the current estimate of the disturbing linear
acceleration. These incorporations, called pseudo-
measurement incorporations, keep the disturbing acceleration
estimate and its covariance consistent with the quantized
measurements. They are discussed in Appendix B.

To derive the equations for incorporation caused by output
change, assume that at time £, the value of m; changes from
its value one sample previously, and that m; remains constant
until time ¢,, when it changes value again. Over the time in-
terval from ¢, to ¢,, a change in the ith component of inertial
velocity is indicated by the measurements, and this velocity
change may be used to update the estimate of the disturbing
linear acceleration. The discrete linear measurement update
equations are given in Eqgs. (14) and (15) for the general scalar
measurement case. For this particular problem, it follows
from Eqgs. (29-31), (35), and (37) that

P=Pd(1(); H=H(t,t;); R=W(t,t,); X=d,4(8,);
y=m;(t) —m;(t) —€mi(t) +€m;i(Ly)
—Ci(tpty) = (t,—t)b; (39)

The values of the quantization biases €,,; and noises E,;
depend on the jet firing activity at times #; and ¢,, and values
for these quantities are developed in Appendix A. In par-
ticular, if m; changes values at ¢; when no jets are firing, the
measured quantity is known to be exactly halfway between
m;(t;_;) and m;(t;). Thus there is a bias on m;(¢;) with
magnitude Q,/2, and the measurement noise is zero. On the
other hand, if jets are firing there is no bias on m;(¢;), and
the noise has covariance Q2/12.

II1. Soft Jet Failure Identification

The term soft failure is used herein to designate a fuel or
oxidizer leak in a vehicle RCS jet. Such failures occur
typically when either an oxidizer or fuel valve, but not both,
remains open when the associated jet is not being commanded
to fire. Since only one valve is open the jet does not fire, but
the expulsion of oxidizer or fuel produces a small force on the
vehicle, typically of the order of ten pounds. Since the
inherent reliability of the jets is quite high, it is tacitly
assumed that no more than one jet leak will occur at any time.
If a single jet is leaking it produces translational and rotation
disturbing accelerations which are linearly related to the
thrust produced by the leak. If oy4,044.04 represent
angular disturbing accelerations of the vehicle with respect to
an inertial reference about the three principal body axes, and
@4y.0,4,,8,, Tepresent linear disturbing accelerations in the
three principal axis directions; then these six accelerations are
rolated, through the geomeatric and inartia properties of the
vehicle, to a leak at the ith jet station as

A= | —=--cwe- =cifi (40)
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where f; =force exerted by a leak at the ith jet station and ¢;
— six-vector array of influence coefficients relating jet force at
the ith station to angular and linear vehicle accelerations.

In Sec. 11, estimators were developed which provide near
optimal estimates of the rotational and translational disturb-
ing accelerations of the vehicle. Although the estimators are
nonlinear, it is reasonable to assume that the probability den-
sity of the acceleration estimates, conditioned on the
measurement history, is normal. Under this assumption, the
probability density for the combined angular and linear
disturbing accelerations, conditioned on the measurement
history M, is'4

p(alM) = (27) 77 |P,| ~Vexp{ —Y2(a—4d) Tp;i(a-d)}
' 41)

where a is the composite vector of angular and linear disturb-
ing accelerations, 4 is the composite vector of disturbing ac-
celeration estimates and P, is the estimation error covariance
matrix of the disturbing accelerations.

In Sec. 11, the translational and rotational estimators were
decoupled for the purpose of simplifying the overall
estimation problem. Hence the covariance P, is approximated
as a block diagonal matrix, assuming no correlation between
translational and rotational estimation errors. Also, since the
angular estimation system is further decoupled into separate
roll, pitch, and yaw channels, the rotational submatrix is
diagonal.l

Now, the linear and angular acceleration states are linearly
related to jet station failures according to Eq. {40). There are
a total of fourteen jet stations, each characterized by its in-
fluence coefficient vector c;. A failure at the ith station must
produce an acceleration in the ¢; direction. At any instant of
time, only one of the fourteen stations can exhibit a failure.
Based on the measurement history, the maximum likelihood
force exerted by a failed jet at the ith station is the value of f;
that maximizes Eq. (41) with ¢f; substituted for a. This is
equivalent to obtaining the minimum of the quadratic form in
the exponential in Eq. (41)

f{:arg{;f_lin[(Cifi"'ﬁ)TPa—l(szi"'d)]} 42)
and performing the minimization in Eq. (42) yields
ﬂ=CiTP;Id/CiTP;lCi . (43)

where, if f* computed via Eq. (43) is negative, it is
automatically set to zero.

Equation (43) is used to obtain the maximum likelihood jet
force for each of the fourteen jet stations. These values con-
stitute the best fits available, under the constraints imposed by
the geometry of the jet station positions and firing directions,
to the assumed conditional statistics of the disturbing ac-
celerations.

Given the maximum likelihood jet force estimates f7, the
question arises as to how well these values fit the measurement
data. Since it is assumed that only one soft failure may have
occurred, a choice must be made between the fourteen
stations as to which of the fourteen estimates f7 best fits the
data. This is accomplished by choosing the jet whose estimate
maximizes the conditional density function given by Eq. (41)
and therefore minimizes the likelihood argument ¢ (f7) given
by

e = (efi—a)TP; ! (c,f7—4) (44)

In other words, the index of the most likely jet failure, j, is
given by

Jj=arg {min ¢(f})} (45)

fIn the steady-state algorithm, P, is diagonal with all rotational
diagonal elements equal and all translational diagonal elements equal.

J.SPACECRAFT

Although it is quite important to indicate a jet failure
quickly, it is also most important to guard against false
alarms and thus ensure a believable FDI system. For this
reason a rather conservative sequence of logical decisions js
used to determine whether a soft failure has in fact occurred,
The decision process utilizes the maximum likelihood
estimates and likelihood arguments described above.

Decision points occur every 7 sec in time. At a decision
point, the translational and rotational disturbing acceleration
estimates are used to determine the maximum likelihood
estimate f7 at each station, according to Eq. (43). Corre-
spondingly, the arguments of the likelihood functions are
evaluated for each of the estimates via Eq. (44). The value of
£(f?) is an indication of how well the estimate 1 fits the con-
ditional statistics of the disturbing acceleration state
variables. Since the disturbing acceleration a is six-
dimensional, a value of £(f?) greater than 20 implies that the
estimate f* lies outside of the ellipsoid of constant probability
density containing 99.7% of the probability mass. If the
problem were of single dimension, this would be analogous to
a sample value that deviated from the mean by more than
three standard deviations.

The first of the decision steps is based on the values of
¢(f?) corresponding to the fourteen most likely jet force
estimates. If all fourteen ¢ (f?) values exceed 20, it is assumed
that none of the estimates fit the data well enough to make a
failure decision, and a no-fail indication is given. If , however,
one or more of the f* estimates yield a value of e(f?) less than
20, these estimates are consistent with the conditional
statistics of  and the decision sequence proceeds.

The second step involves a comparison of the smallest
likelihood argument with all other arguments. If all other
values of ¢(f?) exceed the smallest by more than 6, then the
decision sequence proceeds to the next step. If, however, one
or more of the £(f¥) values is within 6 of the smallest value, it
is assumed that sufficient ambiguity exists so that no failure
decision can be made and a no-fail indication is given. This

check is the generalized likelihood ratio test.!0 If two ¢(f7)

values differ by 6, then the probability that the actual sample
lies within a small region around one estimate is twenty times
larger than the probability that the actual sample lies within
an identical region around the other estimate.

The third step is a simple magnitude check on the ff
estimate with the smallest likelihood argument £(f}), i.e., jet
station j given by Eq. (45). If the magnitude of the estimate f}
is less than 5 Ib, no failure is indicated. If the estimate exceeds
5 Ib, the size of the most likely leak estimate is considered
significant and a leak failure is identified at jet station j.

IV. Hard Jet Failure Identification§

Hard failures are defined as either the event that a jet is
firing when it is not commanded to fire or does not fire on
command to fire. In either case, the 900 b force acting on the
vehicle in an unprescribed manner produces large distur-
bances. These disturbances appear quickly and dramatically
as large measurement residuals in the translation and rotation
state estimators, described in Sec. II. Whereas the detection
and identification of soft failures is accomplished as a single

decision process, hard failure are dealt with in what amounts ;

to a two-step process. First, the presence of a hard failure is

detected and then the hard failure is identified. The hard
failure detection logic is a simple conservative check on the §

magnitudes of the measurement residuals. If the magnitude of
any of the six measurement residuals exceeds ten times its
standard deviation, the presence of a hard failure is indicated,
and the system proceeds to hard failure identification.

The filtering and logic system developed for soft failures is
modified and utilized for hard failure identification. Once 3

§Vernier jet hard failures produce small forces and are therefore
identified using the soft faiture logic.

e
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failure has been detected, the filter gains are appreciably in-
creased tc facilitate tracking of the large disturbing ac-
celeration. The gain increases correspond to multiplying the
standard deviations of the process noise driving the disturbing
acceleration states by a factor of 100. In this manner the filter
states which estimate the disturbing accelerations are made
quite responsive and react quickly to the large measurement
residuals.

The remainder of the hard failure identification method is
nearly identical to the soft failure method, described in Sec.
I11. The jet force magnitude check level is increased to 100 Ib
to reflect the fact that the hard. failure magnitude is 900 Ib
rather than the 10 Ib level assumed for soft failures. Ad-
ditionally, negative values for the force estimates f* are
allowed, and correspond to off-type jet failures.

V. Simulation Results

The FDI system developed in the previous sections was
tested by accurate simulation of the rigid body dynamics of
the space shuttle orbiter vehcile. Both the estimator sample
period and the FDI system decision periods were chosen to be
0.2 sec. Initially the complete FDI system, as described above
including real time estimation error covariance calculations,
was employed, and the results were most encouraging.
Although this system exhibited fast and accurate FDI, the real
time covariance propagation would impose a rather severe
computational burden on a flight computer. Careful scrutiny
of time histories of the estimation error covariances indicated
that they did not vary appreciably during a typical simulation
run and stayed relatively constant from run to run. Hence it
appeared feasible to use constant error covariance values in
the FDI system, thereby eliminating the need for real time
error covariance matrix computations.

As a result of this finding, a constant covariance version of
the FDI system was developed. Error covariance values ob-
tained from the real time simulations were stored and utilized
to determine estimator gains, as described in Sec. 1I, and for
the likelihood function computations of Sec. III. All
operations such as the residual traps, measurement covariance
calculations for the translational channel and estimator gain
calculations, as developed in Sec. 11, were retained except that
prestored constant values for the estimation error covariances
were used in place of real time calculated values. (Appendix C
contains some additional logic required to guarantee stability
in the translational state estimator.) The results reported in
the following sections were obtained with this constant error
covariance version of the FDI system.

A considerable body of simulation results has been amassed
in order to evaluate overall system performance for a variety
of situations. Soft failures were simulated for a variety of
conditions involving jet firings for high and low rate attitude
maneuvers, crew and machinery motion, accelerometer
biases, gravity gradient torques and various orientations of
the vehicle relative to the IMU. It was found that jet leaks,
producing 10 1b of force, were identified in less than 70 sec,
and no missed alarms or false alarms were encountered in any
of the simulations. Hard failures were identified in less than 2
sec.

The simulator provided an accurate six degree of freedom
rigid body model of the vehicle rotation and translation
dynamics, using mass and inertia properties for the 140C
shuttle orbiter design. Random disturbances corresponding to
foreces in the x,y, and z directions of 5 Ib rms, applied at the
cockpit for 0.2 sec intervals and uncorrelated between in-
tervals, were used to model crew and machinery motion
within the vehicle. When jets were firing normally, they had
nominal thrust levels of 900 1b with random deviations of 50
lb rms. The inertial instruments quantized angle and velocity
measurements to 20sec and 1 cm/ respectively. Accelerometer
biases of 50u g rms were used, and it was assumed that there
was uncertainty of 3u g rms in knowledge of these biases. This
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calibration interval of 2 min.

As described above, the state estimation error covariance
values used by the FDI system were constants chosen from the
real time covariance calculation simulations performed
previously. The estimator design was based on parameter
values for the various process noises which were assumed as
inputs to the estimated state variables. At the acceleration
level, the process noise strength was chosen equivalent to in-
dependent white noises of strength 5x 103 Ib2/sec, applied
at each of the 14 jet stations. This process noise was intended
to make the acceleration estimator states responsive to jumps
in jet thrust level representing jet leaks and was chosen em-
pirically from simulations to obtain good estimator per-
formance. On the detection of a hard primary jet failure, this
noise strength was increased to 50 Ib2/sec to facilitate rapid
estimation  of the large disturbing accelerations. At the
velocity level, noise input with strength 5 1b2 sec, equivalent to
the crew and machinery motion noise used in the simulator,
was used. When a jet was firing, the noise strength at the
velocity level was increased to 2000 1b2 sec to represent the un-
certainty in thrust level for a firing jet. Finally, to account for
uncertainty in the accelerometer biases, the translational
estimator employed a bias error variance of 9(ug)?.

Because of the dissimilar effects of the fourteen jet station
process noises described previously on each of the three linear
and three angular channels, the resulting (2,2) and (3,3)
elements of.S for the roll, pitch, and yaw channels and the
diagonal elements of S, were all different for the real time
covariance calculations. Thus, the estimation error covarian-
ces for the roll, pitch, and yaw channels were all different, as
were the diagonal elements of the linear disturbing ac-
celeration estimation error covariance. Identical constant
gains and disturbing angular acceleration error variances for
the three angular channels were obtained by averaging over all
three channels and many measurement incorporations. A
similar method was used to obtain identical disturbing linear
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Table 1 Process noise variances used in real time covariance calculations

Variable Units Condition I Condition 2 Condition 3
54(2,2) rad?/sec? 5.92x10~1T  652x10- %  6.52x10° 8
5,3.3) rad?/sec? 6.56x 1013 6.56x10"2  8.05x10~ 8
54(2,2) rad? /sec? 5.37x 10~ 1! 3.36x 10~ 8 3.36x 10~ 8
5,(3,3) rad?/sec? 3.01x10°13  3.01x10°8  2.49x10- 8
5,(2,2) rad?/sec?  S.13x107Y  3.12x10-%  3.12x107 8
5,(3.,3) rad?/sec* 27910713 279x 10713 3.55x107 %
Sz, ft2/sec? 5.2 x10~! 5.2 x10~1 6.49%x 10~ 6
$,(2,2) ft2 /sec? 8.51x101  gs51x10-1  3.61x107 3
54(3,3) ft2 /sect 1.04x1071%  1.04x1071®  2.08x10°3

Table 2 Parameter values used in simulation

I, =8.67x10° slug ft?
I, =6.82x 106 slug ft2
1, =6.98x 10 shug ft2
Vehicle wexght =2.45%10°Ib
0=9.70x10° b
Q, =0.0328 ft/sec
E, =1078 ft?/sec?
E,=1.72x1073 ft?/sec?
6.88 x 106 ft2 /sec?
E; =
0 with no jet firing

with jet firing

acceleration error variances for the three linear translation
channels. Three sets of constant gains and disturbing ac-
celeration estimation error covariances were found to be suf-
ficient. One set was used for each of the following conditions:
1) no hard failure detected and no jets firing, 2) no hard
failure detected and some jet firings, and 3) hard failure detec-
ted. The numerical values of the three sets of constant gains
and variances are given in Ref. 16. Table 1 shows the nonzero
elements of the process noise covariances used in the real time
covariance calculations mentioned above. Table 2 indicates
some additional parameter values used in the simulation.

In order to lend insight into the performance of the FDI
system, a particular simulation run will be discussed in some
detail below. In this test case a leak at station 5 occurs after a
jet at that station has fired for 2 sec. At the beginning of the
firing there is no vehicle angular velocity. The jet fires nor-
mally for the 2 sec period, but when commanded to cease
firing either a fuel or oxidizer valve stays open and produces a
10 Ib force on the vehicle. The 10 1b leak persists for the
remainder of the simulation. Unfailed jets are commanded to
fire for 2 sec intervals every 40 sec in order to test the FDI
system’s ability to detect leaks in the presence of jet activity.

Figure 2 shows the evolution of the likelihood argument for
station 5. Also plotted is the minimum, at each point in time,
of the likelihood function arguments for the other 13 stations.
As can be seen, after approximately 20 sec the station 5
likelihood function argument is the smallest and stays below
20 during the entire run. At about 38 sec all other arguments
exceed the station 5 argument by more than 6, and this spread
is exceeded for the remainder of the run. Figure 3 depicts the
evolution of the likelihood estimate of the station 5 jet thrust.
The level increases gradually and approaches the true force
level of 10 1b at about 270 sec. The 5 Ib threshold crossing,
required for failure identification, occurs at 57 sec, at which
point a leak failure warning is issued.

This particular case is quite typical of the performance of
the FDI svstem. As mentioned ahove. the FDI logic is quite
conservative and therefore guards against false alarms. This
conservative logic tends to delay identification somewhat, but
provides a highly reliable, believable system. For simulated
leaks at other stations, identification times of the order of one
minute were attained, with a minimum time of 28.2 secand a
maximum of 68.6 sec.

A number of additional results were apparent from detailed
examination of the simulation data. If a jet firing occurs after

a leak has begun but before identification, the estimator ef-
fectively ignores measurement information during the firing,
and identification is delayed. Also, it was found that iden-
tification occurs faster if there is a known bias on the ac-
celerometers. By the very nature of quantized measurements,
much more information is available when pulses are output
from the instrument than when no pulses are available. The
presence of a known accelerometer bias assures the output of
pulses, even when there is no jet activity, thereby ensuring a
high information rate to the FDI system and better iden-
tification performance.

Simulation of primary jet hard failures yielded results
qualitatively similar to the soft failure results reported above.
Detection times of the order of 0.5 sec were obtained with
maximum detection times of 0.6 sec, while identification
times of the order of 1.5 sec were obtained with a maximum
value of 1.6 sec. As with the soft failure detection system, no
hard failure false alarms or missed alarms were encountered
in any of the simulations.

By employing the estimators during a one or two minute
calibration period at the beginning of the orbital mission
phase to calibrate the Euler coefficients in Eq. (8), of the form
I;,~1; /1, «» and the accelerometer biases b;; the FDI system
was made relatively insensitive to off-nominal parameter
values. In addition, the simulation also indicated that the FDI
algorithm performed well over a wide range of vehicle angular
velocities.

’ VII. Conclusions

An effective software RCS FDI system has been developed
for the orbital phase of the space shuttle mission. The method
uses only measurements available from the IMU. In addition
to its FDI function, the system also provides accurate vehicle
attitude and angular velocity estimates for use by the attitude
control system. The FDI system is effective in detecting and
identifying both leaks and hard jet failures. Typically primary
jet leaks and vernier jet hard failures are identified within ap-
proximately 70 sec, and primary jet hard failure detection
requires 0.6 sec with identification within an additional
second. Performance of the system has been proven by
simulation, and no false alarms or missed alarms were en-
countered.

Appendix A: Quantization Bias and Random Noise

The integrating accelerometers on the shuttle orbiter IMU’s
are assumed to have the standard staircase input-output struc-
ture. Thus, a single quantized measurement of the ith com-
ponent of velocity at time ¢,,m;(f,), gives an unbiased
measurement of the input with a measurement error uni-
formly distributed + Q,/2 about the measurement, where Q,
is the linear velocity quantum size. The covariance of such a
uniform distribution is easily calculated to be Q,2/12. Thus,
defining the bias of the quantized measurement to be &,,; (¢,,)
and the covariance of the measurement error tobe E, ;(#,,), it
follows that for a single quantized measurement m, (¢, )

ém,i(tn)=0; Ey,i(tn)'_"Quz/]Z (Al)
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“Table A1 Output change measurement incorporation summary

Jet firing between Jet firing between Equation applicable ~ Equation applicable
times #, _; and £, ? times ¢,_; and #;? attime f, (n=k) attimet,(n="¢)
Yes Yes A-1 A-1

Yes . No A-1 A-2

No " Yes A-2 A-l

No No A2 A2

M i (tn)

M i(ln_1)

INTEGRAL OF INPUT TO ACCELEROMETER i

t

-1
" TIME n

Fig. Al Possible accelerometer input integral given an output
change.

Now, consider a system which samples the quantized
measurements discretely. Assume that at time ¢,_; the ac-
celerometer output has the value m;(¢,_;), and that at time
t, the accelerometer output changes one quantum level to
m;(t,) . This situation is shown in Fig. A-1.

At time ¢,_,;, the actual velocity must be in the region +
Q,/2 about m;(t,_;), while at time ¢, the actual velocity must
be in the region +Q,/2 about m;(t,). If a jet is firing bet-
ween times f,_, and ¢, large accelerations are present, and
any of the three trajectories shown is possible. Thus m;(¢,)
must be considered an unbiased measurement, and the
measurement bias and covariance are given by Eq. (Al).
However if no jet is firing in the interval, only small ac-
celerations arising from jet leaks and process noise are
present, and only a shallow trajectory such as 3 is possible. In
that case, neglecting any small accelerations, the input to the
accelerometer is midway between m; (¢,_;) and m;(¢,): Thus
m;(t,) is essentially a perfect biased measurement of the in-
put, and the measurement bias and covariance are ap-
proximated as

€m,i(ty) =sign [m;(t,) —m;(t,_;)1Q,/2

E,i(t,) =0 (A2)

Using this information, the measurement bias and
covariance approximations for an output change
measurement incorporation follow directly. Denoting the
time of the previous output change as ¢, and the time of the
current output change as #,, the measurement biases and
covariances are determined by the firing activity in the in-
tf':rvals just preceding times ¢, and ¢,. The four possible
situations are summarized in Table Al.

Appendix B; P:eudomeasurement Incorporation

The pseudomeasurement incorporation is used to alter the
disturbing linear acceleration estimate and/or its covariance
to reflect the knowledge inherent in an unchanging quantized
velocity measurement, There are two types of pseudo-
measurements, defined by the presence or absence of jet ac-
tivity in the time interval just prior to the last output change
of accelerometer / at time ¢,.

In the one-sided pseudomeasurement case, there is no jet
firing between times f,_, and ¢,. Thus, neglecting the effect
of disturbing acceleration and process noise over the sample
period, m;(¢,) is a perfect biased measurement of the input,
and its bias and covariance are given by Eq. (A2). The fact
that the accelerometer output has not changed implies that the
change in the accelerometer input is in the interval given by

(B81)

Thus the pseudomeasurement at time ¢,, m;({,), is unbiased
and has variance Q,2/12 as given by Eq. (Al). The estimated
change in the accelerometer input is given by

(0,Q,sign [m; (1) —m;(t;_;)1)

617,- =H,-(t,,tk)lid(t,) + (t,,—tk)b,--i-C,-(l‘i,tk) (B2)
If the estimated velocity change given by Eq. (B2) is outside
the interval given by Eq. (Bl1) for a one-sided
pseudomeasurement, the estimated disturbing linear ac-
celeration is not consistent with the unchanging accelerometer
output, and a pseudomeasurement incorporation is made by
performing Eqs. (14) and (15) using the identities given by Eq.
(39), where the measurement y may be written as

y=sign [m;(t,) —m;(t,~;)10,/2 =Ci{t,t,) — (t,— )b,
' (B3)
In the two-sided pseudomeasurement case, there is a jet
firing between times #,_; and #,. Thus m, (¢;) is an unbiased
measurement of the input, and Eq. (Al) applies. The fact that
the accelerometer output has not changed implies that the
change in the accelerometer input is in the interval given by

( _Qw +Qu) (B4)

Again, the pseudomeasurement m1; (¢,) is unbiased, and Eq.
(A1) applies. If the estimated velocity change given by Eq.
(B2) is outside the interval given by Eq. (B4) for a two-sided
pseudomeasurement, the estimated disturbing linear ac-
celeration is not consistent with the unchanging accelerometer
output, and a two-sided pseudomeasurement incorporation is
made by performing Eqgs. (14) and (15) using the identities
given by Eq. (39), where y may be written as

y==Ciltti) = (= 1), (B5)

In addition to performing one- and two-sided pseudo-
measurement incorporations which change both the estimate
of the disturbing linear acceleration and its covariance,
pseudomeasurement covariance shaping is also employed in
the translational estimator to keep the velocity uncertainty
from growing larger than the variance of the quantized
measurements. This is analogous to the covariance shaping in
the rotational state estimator. In particular, an unchanging
accelerometer output is always interpreted as indicating that
the change in the accelerometer input since the last output
change must lie in the interval given by Eq. (B4). The
covariance for a uniform disiribullon over this lnterval is
0,2/3, and a covariance shaping is performed if the covarian-
ce of the estimated change in accelerometer input is larger
than this value. This condition may be written

Hi(thtk)Pd(tk)Hi(tbtk)T+Ei(tr:tk)

+(t,—1,)°Ep;>Q,%/3 (B6)
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At a sample time ¢, if no output change or
pseudomeasurement incorporation is made for accelerometer
i and Eq (B6) is satisfied, a pseudomeasurement covariance
shaping is made by performing Eq. (14) using the identities

P=P,(t,); H=H(t,1;); R=E;(t,,t})
+ (=t Ey;+Q,%/3 (B7)

Naturally, covariance shaping is not performed in the con-
stant covariance steady-state filter.

Appendix C: Instability Protection in the
Translational Estimator

The translational disturbing acceleration estimator employs
a measurement vector [Eq. (36)] that may grow in an un-
bounded way with time. This technique is necessary to
properly process the available measurements when the
spacecraft is in a quiescent state and there are long intervals
between accelerometer output pulses. However, the use of a
constant covariance matrix, as described in Sec. V, is in-
consistent with an H vector that can grow large with time. In
particular the estimator may become unstable if there are long
intervals between accelerometer pulses.

The estimator assumes that P+ is constant and diagonal
with equal diagonal elements p*. Also, the measurement
matrix is a row vector so Eq. (15), with the 1dent1f1cat10ns
from Egs. (33) and (39), becomes

a4 ,D+ T o+ P+ T .
() =10- —R—H HIz* (1) + 7” y(t); k<t

(cn

Since H is a row vector, HTH has only one nonzero eigenvalue
given by

eigenvalue {HTH}=HHT (C2)

Uniform stability of Eq. (C1) is guaranteed if

ot
— HHTs2 (C3)

and simulation experience has shown that unsatisfactory filter
operation is obtained whenever H becomes so large that the
hound in Eq. (C3) is approached.

The source of the problem is the mconsmency between the
assumption of a constant P* and an H vector that can grow
without bound. In fact, a true optimal estimator exhibits a
much tighter bound than Eq. (C3). Applying the matrix in-
version lemma'? to Eq. (14) yields

P*H'R-'H=PHT(HPH"+R) ~'H (C4)

Premultiplying by H, postmultiplying by H” and substituting
Pt =p* Iyields

pt HPHTHHT
£ (HHTy?= Cs
R ( ) HPHT+R €3
and since HHT<0and R<0
ot HPHT
— HH = ————— <]
R HPHT+R (€6)
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which reduces the bound in Eq. (C3) by half.

To ensure that this restriction is met in the translationg]
estimator, Eq (C6) is checked before a measurement in.
corporatxon is made. If Eq. (C6) is not satisfied, the following
equation is used in place of Eq. (15)

T

H
HAT (y—HZ%) (o))

¥ =%+
With the restriction 6f Eq. (C7) the estimator is guaranteed
to be uniformly stable. Bounded input/bounded output
stability would be guaranteed if it could be assured that over
all intervals of a given length T there are sufficient
measurements to guarantee that the associated HT vectors
span the three-dimensional state space. In this event the
system is stochastically controllable and observable!! and
Liapunov stability follows. In practice it was found that im-
posing the restriction of Eq. (C7) yields good filter per-
formance with no oscillatory tendencies.
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